B. H. Bhide*, A. J. Kalaria and B. M. Panchal

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, India
Received January 23, 2001


#### Abstract

$o$-Lithio $N$-methyl benzamides (1a-f) upon alkylation with ethyl methyl ketone gave ( $\pm$ )-3-ethyl-3-methyl phthalides (2a-f), which upon treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ or anhydrous $\mathrm{AlCl}_{3}$ furnished corresponding 3,3-dimethyl-3,4-dihydroisocoumarins (3a-f) and 3-methyl mellein (3g).


J. Heterocyclic Chem., 39, 623 (2002).

A number of phthalides and dihydroisocoumarins have interesting biological activities e.g. Cladosporin and its monoacetyl derivatives act as antifungal agents, Sclerotinin-A promotes growth of rice seedlings, 3-butylphthalide and 3-butyl-4,5-dihydrophthalide both are effective anticonvulsants, 7-hydroxy-3-butylidenephthalide possess cardiokinetic, antistenocardiacs, antiarrhythmics and coronary artery dilators activity [1-5].

Recently, several workers [6-8] have studied the synthesis of 3 -substituted phthalides and their transformation to 3-alkyl isocoumarins. The purpose of undertaking this work to explore the synthesis of 3,4-dimethyl dihydroisocoumarins as the natural product Oospalactone has this type of substitution pattern. However the phthalides (2a-f), surprisingly, were converted to 3,3-dimethyl-3,4-dihydroisocoumarins. Earlier 3,3-dimethyl-3,4-dihydroisocoumarins were prepared from $\beta$, $\beta$-dimethyl-2-carbostyrenes [9].

## EXPERIMENTAL

All melting and boiling points are uncorrected. Solid compounds were crystallised using ethyl acetate $/ n$-hexane. ${ }^{1} \mathrm{H}$ nmr spectra were recorded on Hitachi R-1500 ( 60 MHz ) instrument using $\mathrm{CDCl}_{3}$ as solvent. Chemical shifts are quoted in parts per million ( $\delta$ ) downfield from the internal tetramethylsilane reference and coupling constants ( J ) are given in Hz . The presence of exhangeable protons was confirmed by the use of deuterium oxide. ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra were recorded on Bruker DPX-200 ( 200 MHz ) instrument with TMS as an internal standard. ir spectra were recorded in KBr on a Nicolett D 400 spectrophotometer. The progress of the reaction was monitered by thin layer chromatography. Iodine vapour was used for detection. Chromatographic separations were performed on silica gel column ( $60-120$ mesh) (open bed chromatography) using gravity flow. Reagents, solvents and starting materials were purchased from standard sources and purified according to literature procedure.

Scheme - I


In the present work ( $\pm$ )-3-ethyl-3-methyl phthalides (2a-f) were synthesized in a single step by alkylating $o$-litho $N$-methyl benzamides (1a-f) with 2-butanone in (40-50\%) yield. These phthalides underwent smooth rearrangement with concenrrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ or anhydrous $\mathrm{AlCl}_{3}$ to give dihydroisocoumarins (3a-g) in about (35$50 \%$ ) yield (Scheme-I).
The above conversion was successfully used to synthesize 3-methyl mellein. The structures of phthalides and dihydroisocoumarins are supported by analytical and spectral evidences.

General Procedure for the Synthesis of ( $\pm$ )-3-Ethyl-3-methyliso-benzofuran-1-ones (2a-f).

To a well stirred solution of $N$-methyl benzamides ( $\mathbf{1 a - f}$ ) (25.6 mmol) in 50 mL dry THF (freshly distilled over $\mathrm{LiAlH}_{4}$ ), $n$ - BuLi [(105 mmoles, prepared from lithium 2.57 g ( 370 mmoles) and $n$ butyl bromide 13.73 mL ( 128 mmoles) in dry ether ( 125 mL )] was added at room temperature under nitrogen atmosphere. The resulting red metallation mixture was then refluxed for 30 minutes. The metallation mixture was condensed with 2-butanone 7.2 mL (128 mmoles) in dry ether at $-10^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 3 hours at room temperature. The excess THF was distilled off under reduce pressure, the residue obtained was decomposed with
hydrochloric acid ( $6 \mathrm{~N}, 100 \mathrm{~mL}$ ) and extracted with ether $(2 \times 50$ $\mathrm{mL})$. The organic layer was washed with cold water ( 100 mL ) and saturated $\mathrm{NaHCO}_{3}$ solution ( 50 mL ). The solution was then dried over anhydrous. $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated to give phthalides ( $\mathbf{2 a} \mathbf{- f}$ ). The phthalides ( $\mathbf{2 a}-\mathbf{f}$ ) were purified by column chromatography over silica gel using $50 \%$ petroleum ether-benzene as an eluent. The liquid products were further purified by distillation.
( $\pm$ )-3-Ethyl-3-methylisobenzofuran-1-one (2a).
This compound was obtained as colorless liquid, 2 g (44.4\%), bp $125^{\circ} \mathrm{C} 15 \mathrm{~mm} / \mathrm{Hg}$; ir (neat): $1763 \mathrm{~cm}^{-1}$ ( $\gamma$-lactone); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta$ $0.76\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.6 \mathrm{~Hz}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right)$, $1.9\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.6 \mathrm{~Hz}\right), 7.3-7.9\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-\right.$ H), $7.9\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ : C, $74.98 ; \mathrm{H}, 6.86$. Found: C, 75.75; H, 6.98.
( $\pm$ )-5-Chloro-3-ethyl-3-methyl-isobenzofuran-1-one (2b).
This compound was obtained as white needles, $2.4 \mathrm{~g}(45 \%)$, mp $85^{\circ}$; ir ( KBr ): $1760 \mathrm{~cm}^{-1}$ ( $\gamma$-lactone); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 0.77(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.5 \mathrm{~Hz}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 1.9(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left._{3}, \mathrm{~J}=6.5 \mathrm{~Hz}\right), 7.3-7.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{6}-\mathrm{H}\right), 7.9(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{C}_{7}-\mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}$ ).
Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{2}$ : C, 62.72; H, 5.26. Found: C, 62.56; H, 5.53.
( $\pm$ )-3-Ethyl-3,5-dimethyl-isobenzofuran-1-one (2c).
This compound was obtained as white needles, 2.2 g (44.6\%), mp 62 ${ }^{\circ}$; ir ( KBr ): $1743 \mathrm{~cm}^{-1}$ ( $\gamma$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 0.76$ (t, 3 H , $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.6 \mathrm{~Hz}\right), 1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{CH}_{3}\right), 1.9(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\mathrm{CH}_{3}, \mathrm{~J}=6.6 \mathrm{~Hz}$ ), $2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\mathrm{C}_{5}$ ), 7.1-7.3 (m, $2 \mathrm{H}, \mathrm{C} 4, \mathrm{C} 6-\mathrm{H}), 7.8$ (d, $1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}$ ).
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ : C, 75.76; $\mathrm{H}, 7.41$. Found: C, 75.58; H, 7.56.
( $\pm$ )-3-Ethyl-3,4,6-trimethyl-isobenzofuran-1-one (2d).
This compound was obtained as colorless liquid, 2.6 g ( $50 \%$ ), bp $118^{\circ} 15 \mathrm{~mm} / \mathrm{Hg}$; ir (neat): $1763 \mathrm{~cm}^{-1}$ ( $\gamma$-lactone); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta$ $0.80\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C} 3, \mathrm{~J}=6.6 \mathrm{~Hz}\right), 1.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C 3$)$, $2.0\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C} 3, \mathrm{~J}=6.6 \mathrm{~Hz}\right), 2.3 \& 2.4\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\mathrm{C} 4 \& \mathrm{C} 6), 7.2\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right)$.
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 76.44; H, 7.89. Found: C, 76.32; H, 7.65.
( $\pm$ )-3-Ethyl-3,5,6-trimethyl-isobenzofuran-1-one (2e).
This compound was obtained as white needles, $2.45 \mathrm{~g}(48 \%)$, $\mathrm{mp} 83^{\circ}$; ir (KBr): $1756 \mathrm{~cm}^{-1}$ ( $\gamma$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 0.79(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.8 \mathrm{~Hz}\right), 1.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 2.1(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.8 \mathrm{~Hz}\right), 2.3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{5} \& \mathrm{C}_{6}\right), 7.2(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 7.7\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{7}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}: \delta 8.2\left(-\mathrm{CH}_{2}-\mathrm{CH}_{3}\right), 20.24$ \& $21.13\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{5} \& \mathrm{C}_{6}\right), 26.17\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 33.26\left(-\mathrm{CH}_{2}-\right)$, $87.96\left(\mathrm{C}_{3}\right), 122.19$ (=C<), 124.45 ( $=\mathrm{C}<$ ), 126.17 (=C<), 138.32 ( $=\mathrm{C}<$ ), 144.59 ( $=\mathrm{C}<$ ), 152.26 ( $=\mathrm{C}<$ ), 170.76 ( $\mathrm{C}_{1}$ Carbonyl).
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 76.44; H, 7.89. Found: C, 76.35; H, 7.71.
( $\pm$ )-3-Ethyl-3-methyl-7-methoxy-isobenzofuran-1-one (2f).
This compound was obtained as white needles, $2.1 \mathrm{~g}(41 \%), \mathrm{mp}$ $58^{\circ}$; ir ( KBr ): $1770 \mathrm{~cm}^{-1}$ ( $\gamma$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 0.75$ (t, 3 H , $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.8 \mathrm{~Hz}\right), 1.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 1.99(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}, \mathrm{~J}=6.8 \mathrm{~Hz}\right), 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ at $\left.\mathrm{C}_{7}\right), 6.8-7.5(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}-\mathrm{H}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 69.89 ; \mathrm{H}, 6.84$. Found: C, 69.98; H, 6.73.

General Procedure for the Conversion of Isobenzofuran-1-ones (2a-f) to $1 H, 4 H-3,3$-Dimethyl-2-benzopyran-1-ones (3a-f) and (3g).

## Method A.

Phthalides ( $\mathbf{2 a - f}$ ) ( 1.7 mmoles ) were mixed with cold conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \mathrm{~mL})$ and after shaking well the mixture was warmed on a boiling water bath for 1 hr and kept at room temperature for 24 hrs. The reaction mixture was decomposed by adding cold water $(50 \mathrm{~mL})$ and extracted with ether $(2 \times 25 \mathrm{~mL})$. The organic layer was washed with saturated sodium bicarbonate solution $(50 \mathrm{~mL})$ and cold water $(50 \mathrm{~mL})$, dried over anhydrous sodium sulfate and evaporated to give a product (3a-f) in 35-40\% yield.

## Method B.

Phthalides (2a-e) ( 1.7 mmoles) were treated with anhydrous $\mathrm{AlCl}_{3}(300 \mathrm{mg})$ in dry methylene chloride $(25 \mathrm{~mL})$ at reflux temperature for 1-2 hrs (monitored by TLC). Methylene chloride was evaporated and the residue decomposed with $\mathrm{HCl}(6 \mathrm{~N})$ and extracted with ether $(2 \times 25 \mathrm{~mL})$. The organic layer was washed with saturated sodium bicarbonate solution $(50 \mathrm{~mL})$ and cold water ( 50 mL ), dried over anhydrous sodium sulfate and evaporated to give crude ( $\mathbf{3 a}-\mathbf{e}$ ). Reaction of $\mathbf{2 f}$ with $\mathrm{AlCl}_{3}$ gave 3 f and demethylated product 3-methyl mellein ( $\mathbf{3 g}$ ). They were purified by column chromatography over silica gel using $50 \%$ pet.etherbenzene as an eluent to give $\mathbf{3 a - f}$ and $\mathbf{3 g}$ in ( $45-50 \%$ ) yield, identical with those obtained from method A.

## $1 H, 4 H$-3,3-Dimethyl-2-benzopyran-1-one (3a).

This compound was obtained as colorless liquid, 0.14 g ( $48 \%$ ), bp $145^{\circ} 15 \mathrm{~mm} / \mathrm{Hg}$; lit[9].,bp $153-154{ }^{\circ} 11 \mathrm{~mm} / \mathrm{Hg}$; $\operatorname{ir}(\mathrm{KBr}): 1710$ $\mathrm{cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H} \mathrm{nmr}: \delta 1.45\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ at $\mathrm{C}_{3}$ ), 3.02 (s, 2 H , benzylic $-\mathrm{CH}_{2}$ ), 7.1-7.5(m,3H, $\left.\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathrm{H}\right), 7.8\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{8}-\right.$ $\mathrm{H}, \mathrm{J}=8 \mathrm{~Hz}$ ).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ : C, 74.98; $\mathrm{H}, 6.86$. Found: C, 75.20; H, 6.92.

## $1 H, 4 H$-6-Chloro-3,3-dimethyl-2-benzopyran-1-one (3b).

This compound was obtained as white needles, $0.17 \mathrm{~g}(47.6 \%)$, $\mathrm{mp} 157^{\circ}$; ir (KBr): $1716 \mathrm{~cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 1.45(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}\right), 2.9\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzylic $\left.-\mathrm{CH}_{2}\right), 7.2-7.5\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \&\right.$ $\left.\mathrm{C}_{7}-\mathrm{H}\right), 7.8\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}\right)$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{2}$ : C, 62.72; H, 5.26. Found: C, 62.85; H, 5.43.

## $1 H, 4 H-3,3,6-T r i m e t h y l-2-b e n z o p y r a n-1-o n e ~(3 c) . ~$

This compound was obtained as a white needle, $0.11 \mathrm{~g}(37 \%)$, $\mathrm{mp} 55^{\circ}$; ir ( KBr ): $1715 \mathrm{~cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 1.45(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}\right), 2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 2.89\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzylic $\left.-\mathrm{CH}_{2}\right)$, 6.9-7.2 (m, 2H, C $\left.{ }_{5}, \mathrm{C}_{7}-\mathrm{H}\right), 7.9\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}$ : $\delta 12.10 \& 12.25\left(2 \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{6}\right), 32.0\left(\mathrm{C}_{4}\right)$, $82.3\left(\mathrm{C}_{3}\right), 125.0$ (=C), 128.53 (=C<), $135.24(=\mathrm{C}<), 135.37$ (=C $<$ ), 136.40 (=C $<$ ), 136.99 (=C $<$ ), 166.57 ( $\mathrm{C}_{1}$ Carbonyl).

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ : C, 75.76; $\mathrm{H}, 7.41$. Found: C, 75.88; H, 7.51.

## 1H,4H-3,3,5,7-Tetramethyl-2-benzopyran -1-one (3d).

This compound was obtained as white needles, $0.13 \mathrm{~g}(40 \%)$, $\mathrm{mp} 77^{\circ}$; ir ( KBr ): $1720 \mathrm{~cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}$ : $\delta 1.44$ (s, 6 H ,
$2 \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}\right), 2.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{5}\right), 2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{7}\right), 2.93$ (s, 2 H , benzylic $-\mathrm{CH}_{2}$ ), $7.1\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 7.8\left(\mathrm{~S}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right)$.
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 76.44; H, 7.89. Found: C, 76.65; H, 7.75.

1H,4H-3,3,6,7-Tetramethyl-2-benzopyran-1-one (3e).
This compound was obtained as white needles, 0.17 g ( $50 \%$ ), $\mathrm{mp} \mathrm{117}{ }^{\circ}$; ir (KBr): $1709 \mathrm{~cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}$ : $\delta 1.4$ (s, $6 \mathrm{H}, 2$ $\mathrm{CH}_{3}$ at $\mathrm{C}_{3}$ ); $2.3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{6}, \mathrm{C}_{7}\right), 2.8(\mathrm{~s}, 2 \mathrm{H}$, benzylic $\left.-\mathrm{CH}_{2}\right), 6.9\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{nmr}: \delta 12.14 \&$ $12.84\left(2 \mathrm{CH}_{3}\right.$ at $\left.\mathrm{C}_{3}\right), 27.37\left(2 \mathrm{CH}_{3}\right.$ at $\mathrm{C}_{6} \& \mathrm{C}_{7}$ merged), 38.81 $\left(\mathrm{C}_{4}\right), 80.46\left(\mathrm{C}_{3}\right), 122.01$ ( $\left.=\mathrm{C}<\right)$, $128.95(=\mathrm{C}<), 130.63$ (=C $<$ ), 135.45 (=C $<$ ), 135.83 ( $=\mathrm{C}<)$, 143.36 ( $=\mathrm{C}<)$, $165.30\left(\mathrm{C}_{1}\right.$ Carbonyl).
Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ : C, 76.44; H, 7.89. Found: C, 76.59; H, 7.72.

1H,4H-3,3-Dimethyl-8-methoxy-2-benzopyran-1-one i.e., 3-Methyl Mellein Methyl Ether ( $\mathbf{3 f}$ ).

This compound was obtained as white needles, 0.16 g ( $47 \%$ ), $\mathrm{mp} 95^{\circ}$; ir ( KBr ): $1708 \mathrm{~cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 1.41(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{CH}_{3}$ at $\left.\mathrm{C}_{3}\right), 2.9\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzylic $\left.-\mathrm{CH}_{2}\right) ; 3.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ at $\left.\mathrm{C}_{8}\right)$, 6.7-7.6 (m, 3H, $\left.\mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}-\mathrm{H}\right)$.

Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 69.89 ; \mathrm{H}, 6.84$. Found: C, 69.74; H, 6.97.
$1 H, 4 H-3,3$-Dimethyl-8-hydroxy-2-benzopyran-1-one i.e., 3-Methyl Mellein (3g).

This compound was obtained as white needles, $0.12 \mathrm{~g}(48 \%)$, mp 65 ${ }^{\circ}$; ir (KBr): $1677 \mathrm{~cm}^{-1}$ ( $\delta$-lactone); ${ }^{1} \mathrm{H}-\mathrm{nmr}: \delta 1.4$ (s, $6 \mathrm{H}, 2$
$\mathrm{CH}_{3}$ at $\mathrm{C}_{3}$ ), $2.9\left(\mathrm{~s}, 2 \mathrm{H}\right.$, benzylic - $\mathrm{CH}_{2}$ ), 6.6-7.5 ( $\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{5}, \mathrm{C}_{6}$, $\left.\mathrm{C}_{7}-\mathrm{H}\right) ; 11.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{8}-\mathrm{OH}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable).

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ : C, 68.74; $\mathrm{H}, 6.29$. Found: C, 68.62; H, 6.52.

Acknowledgement.
The authors are thankful to the Head, Department of chemistry, Sardar Patel University for providing research facilities.

## REFERENCES AND NOTES

[1] P. M. Scott, and W.Van. Walbeek, J. Antibiot., 24, 747 (1971), Chem. Abstr., 76, 5766u (1972).
[2] J. A. Waitz and C. G. Drube, Annu.rep.med.chem., 7, 109, (1972), Chem. Abstr., 78, 66699b (1973).
[3] A. K Tanaka, C. Sato, Y. Shibata, A. Kobayashi and K. Yamashita, Agri. Biol. Chem., 38, 1311 (1974), Chem. Abstr., 82, 27091k (1975).
[4] Y. Junshan and C. Yuwu, Yaoxue Tongbao, 19, 670 (1984), Chem. Abstr., 103, 92687a (1985).
[5] F. Yoshiyasu, O. Hiroyoshi, and O. Yoshio, Jpn. Kokai. Tokkyo. Koho. Jp., 60, 155, 175, Chem. Abstr., 105, 85184x (1986).
[6] F. N. Hauser , J. Org. Chem., 53, 4676 (1988).
[7] R. S. Mali and N. B. Kantipudi, J. Org. Chem., 38B, 971 (1999).
[8] B. H. Bhide, A. J. Kalaria and S. K. Patel, Ind. J. Chem., 38B, 971 (1999).
[9] M. Yamato, K.Sato, A. Taniguchi, A. Miyaki, and T. Koyama, Chem. Pharm. Bull., 26, 1990 (1978), Chem. Abstr, 90, 22738g (1979).

