Conversion of (±)-3-Ethyl-3-methyl phthalides to 3,3-Dimethyl-3,4dihydroisocoumarins. Synthesis of 3-Methylmellein.

B. H. Bhide*, A. J. Kalaria and B. M. Panchal

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, India Received January 23, 2001

o-Lithio *N*-methyl benzamides (**1a-f**) upon alkylation with ethyl methyl ketone gave (\pm)-3-ethyl-3-methyl phthalides (**2a-f**), which upon treatment with concentrated H₂SO₄ or anhydrous AlCl₃ furnished corresponding 3,3-dimethyl-3,4-dihydroisocoumarins (**3a-f**) and 3-methyl mellein (**3g**).

J. Heterocyclic Chem., 39, 623 (2002).

A number of phthalides and dihydroisocoumarins have interesting biological activities *e.g.* Cladosporin and its monoacetyl derivatives act as antifungal agents, Sclerotinin-A promotes growth of rice seedlings, 3-butylphthalide and 3-butyl-4,5-dihydrophthalide both are effective anticonvulsants, 7-hydroxy-3-butylidenephthalide possess cardiokinetic, antistenocardiacs, antiarrhythmics and coronary artery dilators activity [1-5].

Recently, several workers [6-8] have studied the synthesis of 3-substituted phthalides and their transformation to 3-alkyl isocoumarins. The purpose of undertaking this work to explore the synthesis of 3,4-dimethyl dihydroiso-coumarins as the natural product Oospalactone has this type of substitution pattern. However the phthalides (**2a-f**), surprisingly, were converted to 3,3-dimethyl-3,4-dihydroiso-coumarins were prepared from β , β -dimethyl-2-carbostyrenes [9].

EXPERIMENTAL

All melting and boiling points are uncorrected. Solid compounds were crystallised using ethyl acetate/n-hexane. ¹Hnmr spectra were recorded on Hitachi R-1500 (60 MHz) instrument using CDCl₃ as solvent. Chemical shifts are quoted in parts per million (δ) downfield from the internal tetramethylsilane reference and coupling constants (J) are given in Hz. The presence of exhangeable protons was confirmed by the use of deuterium oxide. ¹³C-nmr spectra were recorded on Bruker DPX-200 (200 MHz) instrument with TMS as an internal standard. ir spectra were recorded in KBr on a Nicolett D-400 spectrophotometer. The progress of the reaction was monitered by thin layer chromatography. Iodine vapour was used for detection. Chromatographic separations were performed on silica gel column (60-120 mesh) (open bed chromatography) using gravity flow. Reagents, solvents and starting materials were purchased from standard sources and purified according to literature procedure.

In the present work (\pm)-3-ethyl-3-methyl phthalides (**2a-f**) were synthesized in a single step by alkylating *o*-litho *N*-methyl benzamides (**1a-f**) with 2-butanone in (40-50%) yield. These phthalides underwent smooth rearrangement with concentrated H₂SO₄ or anhydrous AlCl₃ to give dihydroisocoumarins (**3a-g**) in about (35-50%) yield (Scheme-I).

The above conversion was successfully used to synthesize 3-methyl mellein. The structures of phthalides and dihydroisocoumarins are supported by analytical and spectral evidences. General Procedure for the Synthesis of (\pm) -3-Ethyl-3-methylisobenzofuran-1-ones (**2a-f**).

To a well stirred solution of *N*-methyl benzamides (**1a-f**) (25.6 mmol) in 50 mL dry THF (freshly distilled over LiAlH₄), *n*-BuLi [(105 mmoles, prepared from lithium 2.57 g (370 mmoles) and *n*-butyl bromide 13.73 mL (128 mmoles) in dry ether (125 mL)] was added at room temperature under nitrogen atmosphere. The resulting red metallation mixture was then refluxed for 30 minutes. The metallation mixture was condensed with 2-butanone 7.2 mL (128 mmoles) in dry ether at -10 °C and the reaction mixture was distilled off under reduce pressure, the residue obtained was decomposed with

hydrochloric acid (6 *N*, 100 mL) and extracted with ether (2×50 mL). The organic layer was washed with cold water (100 mL) and saturated NaHCO₃ solution (50 mL). The solution was then dried over anhydrous .Na₂SO₄, and the solvent was evaporated to give phthalides (**2a-f**). The phthalides (**2a-f**) were purified by column chromatography over silica gel using 50% petroleum ether-benzene as an eluent. The liquid products were further purified by distillation.

(±)-3-Ethyl-3-methylisobenzofuran-1-one (2a).

This compound was obtained as colorless liquid, 2g (44.4%), bp 125 °C 15mm/Hg; ir (neat):1763cm⁻¹(γ-lactone); ¹H nmr : δ 0.76(t, 3H, CH₂*CH*₃ at C₃, J = 6.6Hz), 1.65 (s, 3H, CH₃ at C₃), 1.9 (q, 2H, *CH*₂CH₃ at C₃, J = 6.6Hz), 7.3-7.9 (m, 3H, C₄,C₅,C₆-H), 7.9(d, 1H, C₇-H, J = 7.8 Hz).

Anal. Calcd. for C₁₁H₁₂O₂: C, 74.98; H, 6.86. Found: C, 75.75; H, 6.98.

(±)-5-Chloro-3-ethyl-3-methyl-isobenzofuran-1-one (2b).

This compound was obtained as white needles, 2.4g (45%), mp 85°; ir (KBr): 1760 cm⁻¹ (γ -lactone); ¹H nmr : δ 0.77 (t, 3H, CH₂*CH*₃ at C₃, J = 6.5Hz), 1.63 (s, 3H, CH₃ at C₃), 1.9 (q, 2H, *CH*₂CH₃ at C₃, J = 6.5Hz), 7.3-7.5 (m, 2H, C₄, C₆-H), 7.9 (d, 1H, C₇-H, J = 7.8Hz).

Anal. Calcd. for C₁₁H₁₁ClO₂: C, 62.72; H, 5.26. Found: C, 62.56; H, 5.53.

(\pm) -3-Ethyl-3,5-dimethyl-isobenzofuran-1-one (2c).

This compound was obtained as white needles, 2.2g (44.6%), mp 62°; ir (KBr):1743 cm⁻¹ (γ -lactone); ¹H-nmr : δ 0.76 (t, 3H, CH₂*CH*₃ at C₃, J = 6.6Hz), 1.63 (s, 3H, CH₃ at CH₃), 1.9 (q, 2H, *CH*₂CH₃ at CH₃, J = 6.6 Hz), 2.4 (s, 3H, CH₃ at C₅), 7.1-7.3 (m, 2H, C4,C6-H), 7.8 (d, 1H, C7-H, J = 7.8Hz).

Anal. Calcd. for C₁₂H₁₄O₂: C, 75.76; H, 7.41. Found: C, 75.58; H, 7.56.

(±)-3-Ethyl-3,4,6-trimethyl-isobenzofuran-1-one (2d).

This compound was obtained as colorless liquid, 2.6g (50%), bp 118° 15mm/Hg; ir (neat): 1763 cm⁻¹ (γ-lactone); ¹H nmr : δ 0.80 (t, 3H, CH₂*CH*₃ at C3, J = 6.6Hz), 1.59 (s, 3H, CH₃ at C3), 2.0 (q, 2H, *CH*₂CH₃ at C3, J = 6.6 Hz), 2.3 & 2.4 (2s, 6H, CH₃ at C4 & C6), 7.2 (s, 1H, C₅-H), 7.8 (s, 1H, C₇-H).

Anal. Calcd. for C₁₃H₁₆O₂: C, 76.44; H, 7.89. Found: C, 76.32; H, 7.65.

(±)-3-Ethyl-3,5,6-trimethyl-isobenzofuran-1-one (2e).

This compound was obtained as white needles, 2.45g (48%), mp 83°; ir (KBr): 1756 cm⁻¹ (γ -lactone); ¹H-nmr : δ 0.79 (t, 3H, CH₂CH₃ at C₃, J = 6.8Hz), 1.5 (s, 3H, CH₃ at C₃), 2.1 (q, 2H, CH₂CH₃ at C₃, J = 6.8Hz), 2.3 (s, 6H, CH₃ at C₅ & C₆), 7.2 (s, 1H, C₄-H), 7.7 (s, 1H, C₇-H); ¹³C-nmr : δ 8.2 (-CH₂-CH₃), 20.24 & 21.13 (CH₃ at C₅ & C₆), 26.17 (CH₃ at C₃), 33.26 (-CH₂-), 87.96 (C₃), 122.19 (=C<), 124.45 (=C<), 126.17 (=C<), 138.32 (=C<), 144.59 (=C<), 152.26 (=C<), 170.76 (C₁ Carbonyl).

Anal. Calcd. for C₁₃H₁₆O₂: C, 76.44; H, 7.89. Found: C, 76.35; H, 7.71.

(±)-3-Ethyl-3-methyl-7-methoxy-isobenzofuran-1-one (2f).

This compound was obtained as white needles, 2.1g (41%), mp 58°; ir (KBr): 1770 cm⁻¹ (γ -lactone); ¹H-nmr : δ 0.75 (t, 3H, CH₂*CH*₃ at C₃, J = 6.8Hz), 1.6 (s,3H,CH₃ at C₃), 1.99 (q, 2H, *CH*₂CH₃ at C₃, J = 6.8Hz), 3.9 (s, 3H,OCH₃ at C₇), 6.8-7.5 (m, 3H, C₄,C₅,C₆-H).

Anal. Calcd. for $C_{12}H_{14}O_3$: C, 69.89; H, 6.84. Found: C, 69.98; H, 6.73.

General Procedure for the Conversion of Isobenzofuran-1-ones (**2a-f**) to1*H*,4*H*-3,3-Dimethyl-2-benzopyran-1-ones (**3a-f**) and (**3g**).

Method A.

Phthalides (**2a-f**) (1.7 mmoles) were mixed with cold conc. H_2SO_4 (2mL) and after shaking well the mixture was warmed on a boiling water bath for 1 hr and kept at room temperature for 24 hrs. The reaction mixture was decomposed by adding cold water (50mL) and extracted with ether (2 × 25mL). The organic layer was washed with saturated sodium bicarbonate solution(50mL) and cold water (50mL), dried over anhydrous sodium sulfate and evaporated to give a product (**3a-f**) in 35-40% yield.

Method B.

Phthalides (**2a-e**) (1.7 mmoles) were treated with anhydrous AlCl₃ (300mg) in dry methylene chloride (25mL) at reflux temperature for 1-2 hrs (monitored by TLC). Methylene chloride was evaporated and the residue decomposed with HCl (6N) and extracted with ether (2×25 mL). The organic layer was washed with saturated sodium bicarbonate solution(50mL) and cold water (50mL), dried over anhydrous sodium sulfate and evaporated to give crude (**3a-e**). Reaction of **2f** with AlCl₃ gave 3f and demethylated product 3-methyl mellein (**3g**). They were purified by column chromatography over silica gel using 50% pet.etherbenzene as an eluent to give **3a-f** and **3g** in (45-50%) yield, identical with those obtained from method A.

1H,4H-3,3-Dimethyl-2-benzopyran-1-one (**3a**).

This compound was obtained as colorless liquid, 0.14g (48%), bp 145° 15mm/Hg; lit[9].,bp 153-154° 11mm/Hg; ir(KBr): 1710 cm⁻¹ (δ -lactone); ¹H nmr : δ 1.45(s, 6H, 2 CH₃ at C₃), 3.02 (s, 2H, benzylic -CH₂), 7.1-7.5(m, 3H, C₅,C₆,C₇-H), 7.8 (d, 1H, C₈-H, J= 8 Hz).

Anal. Calcd. for $C_{11}H_{12}O_2$: C, 74.98; H, 6.86. Found: C, 75.20; H, 6.92.

1H,4H-6-Chloro-3,3-dimethyl-2-benzopyran-1-one (3b).

This compound was obtained as white needles, 0.17g (47.6%), mp 157°; ir (KBr): 1716 cm⁻¹ (δ -lactone); ¹H-nmr : δ 1.45(s, 6H, 2 CH₃ at C₃), 2.9 (s, 2H, benzylic -CH₂), 7.2-7.5 (m, 2H, C₅ & C₇-H), 7.8 (d, 1H, C₈-H, J = 7.9Hz).

Anal. Calcd. for C₁₁H₁₁ClO₂: C, 62.72; H, 5.26. Found: C, 62.85; H, 5.43.

1H,4H-3,3,6-Trimethyl-2-benzopyran-1-one (3c).

This compound was obtained as a white needle, 0.11g (37%), mp 55°; ir (KBr): 1715 cm⁻¹ (δ -lactone); ¹H-nmr : δ 1.45 (s, 6H, 2 CH₃ at C₃), 2.3 (s, 3H, CH₃ at C₃), 2.89 (s, 2H, benzylic -CH₂), 6.9-7.2 (m, 2H, C₅, C₇-H), 7.9 (d, 1H, C₈-H, J = 7.9Hz); ¹³C-nmr : δ 12.10 & 12.25 (2 CH₃ at C₃), 22.4(CH₃ at C₆), 32.0(C₄), 82.3(C₃), 125.0 (=C<), 128.53 (=C<), 135.24(=C<), 135.37 (=C<), 136.40(=C<), 136.99 (=C<), 166.57 (C₁ Carbonyl).

Anal. Calcd. for $C_{12}H_{14}O_2$: C, 75.76; H, 7.41. Found: C, 75.88; H, 7.51.

1*H*,4*H*-3,3,5,7-Tetramethyl-2-benzopyran -1-one (**3d**).

This compound was obtained as white needles, 0.13g (40%), mp 77°; ir (KBr): 1720 cm⁻¹ (δ -lactone); ¹H-nmr: δ 1.44 (s, 6H,

2CH₃ at C₃), 2.3 (s, 3H, CH₃ at C₅), 2.4 (s,3H, CH₃ at C₇), 2.93 (s, 2H, benzylic -CH₂), 7.1 (s, 1H,C₆-H), 7.8 (S, 1H,C₈-H).

Anal. Calcd. for C₁₃H₁₆O₂: C, 76.44; H, 7.89. Found: C, 76.65; H, 7.75.

1*H*,4*H*-3,3,6,7-Tetramethyl-2-benzopyran-1-one (**3e**).

This compound was obtained as white needles, 0.17g (50%), mp 117°; ir (KBr): 1709 cm⁻¹ (δ -lactone); ¹H-nmr: δ 1.4 (s, 6H, 2 CH₃ at C₃); 2.3 (s, 6H, CH₃ at C₆, C₇), 2.8 (s, 2H, benzylic -CH₂), 6.9 (s, 1H,C₅-H), 7.8 (s, 1H, C₈-H); ¹³C-nmr: δ 12.14 & 12.84 (2 CH₃ at C₃), 27.37 (2 CH₃ at C₆ & C₇ merged), 38.81 (C₄), 80.46 (C₃), 122.01 (=C<), 128.95 (=C<), 130.63 (=C<), 135.45 (=C<), 135.83 (=C<), 143.36 (=C<), 165.30 (C₁ Carbonyl).

Anal. Calcd. for C₁₃H₁₆O₂: C, 76.44; H, 7.89. Found: C, 76.59; H, 7.72.

1*H*,4*H*-3,3-Dimethyl-8-methoxy-2-benzopyran-1-one *i.e.*, 3-Methyl Mellein Methyl Ether (**3f**).

This compound was obtained as white needles, 0.16g (47%), mp 95°; ir (KBr): 1708 cm⁻¹ (δ -lactone); ¹H-nmr : δ 1.41 (s, 6H, 2 CH₃ at C₃), 2.9 (s, 2H, benzylic -CH₂); 3.9 (s, 3H, OCH₃ at C₈), 6.7-7.6 (m, 3H, C₅, C₆, C₇-H).

Anal. Calcd. for $C_{12}H_{14}O_3$: C, 69.89; H, 6.84. Found: C, 69.74; H, 6.97.

1*H*,4*H*-3,3-Dimethyl-8-hydroxy-2-benzopyran-1-one *i.e.*, 3-Methyl Mellein (**3g**).

This compound was obtained as white needles, 0.12 g (48%), mp 65°; ir (KBr): 1677 cm⁻¹ (δ -lactone); ¹H-nmr : δ 1.4 (s, 6H, 2

CH₃ at C₃), 2.9 (s, 2H, benzylic -CH₂), 6.6-7.5 (m, 3H, C₅, C₆, C₇-H); 11.17 (1H, s, C₈-OH, D₂O exchangeable).

Anal. Calcd. for C₁₁H₁₂O₃: C, 68.74; H, 6.29. Found: C, 68.62; H, 6.52.

Acknowledgement.

The authors are thankful to the Head, Department of chemistry, Sardar Patel University for providing research facilities.

REFERENCES AND NOTES

[1] P. M. Scott, and W.Van. Walbeek, J. Antibiot., 24, 747 (1971), Chem. Abstr., 76, 5766u (1972).

[2] J. A. Waitz and C. G. Drube, *Annu.rep.med.chem.*, **7**, 109, (1972), *Chem. Abstr.*, **78**, 66699b (1973).

[3] A. K Tanaka, C. Sato, Y. Shibata, A. Kobayashi and K. Yamashita, *Agri. Biol. Chem.*, **38**, 1311 (1974), *Chem. Abstr.*, **82**, 27091k (1975).

[4] Y. Junshan and C. Yuwu, *Yaoxue Tongbao*, **19**, 670 (1984), *Chem. Abstr.*, **103**, 92687a (1985).

[5] F. Yoshiyasu, O. Hiroyoshi, and O. Yoshio, *Jpn. Kokai. Tokkyo. Koho. Jp.*, **60**, 155, 175, *Chem. Abstr.*, **105**, 85184x (1986).

[6] F. N. Hauser, J. Org. Chem., **53**, 4676 (1988).

[7] R. S. Mali and N. B. Kantipudi, *J. Org. Chem.*, **38B**, 971 (1999).

[8] B. H. Bhide, A. J. Kalaria and S. K. Patel, Ind. J. Chem., 38B, 971 (1999).

[9] M. Yamato, K.Sato, A. Taniguchi, A. Miyaki, and T. Koyama, *Chem. Pharm. Bull.*, **26**, 1990 (1978), *Chem. Abstr.*, **90**, 22738g (1979).